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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

154%1-TR 1

1541-TR 2

1541-TR 3

1541-TR 4
1541-TR 5

1541-TR 6

1541-TR 7
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12

1541-TR 13

1541-TR 1k

1541-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of Linear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Punction Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimim Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle -

A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts
and objectively discusses the significance of the results obtained. The
results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 10.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 3 it is shown that the problem of controlling m components
(1 <m< n),;of the state vector for an n-th order linear constant coefficient
plant, to zero in finite time can be reformilated as a problem of controlling
a single component.

Section 4 shows Pontriagin's Maximum Principle is often a sufficient
condition for optimal control of linear plants. '

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section 7.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9. :

Section 10 presents a reformilation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 11.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a ‘certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example.

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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TIME OPTIMAL BOUNDED PHASE
COORDINATE CONTROL OF LINEAR
RECURRENCE SYSTEMS*

by E. B. LeeT

ABSTRACT
‘/;fj;4/:3

The time optimal control problem with bounded phase
coordinates is consildered for systems modeled by linear
recurrence equations. It is shown that linear inequality
constraints of the phase coordinates can be transformed into
similar linear inequality constraints on the control variables.
Methods for finding the so-constrained minimum are discussed.
A convergent computational scheme 1is presented, which, unfortunately,
involves a large amount of equipment for implementation. It does

not seem practical to solve this problem on line using present

/jtm
computer technology.
ANALYSIS
The eal recurrence equation
A
x(r+1) = A(r) x(r) + B(r) u(r) (1)

will be considered, where x(r), an n vector, is the system state;

A
u(r), an m vector, is the control; A(r) and B(r) are m x n and n x m
bounded matrices respectively; and r = 0,1,2,... denotes the stage

of the evolution. It i1s assumed that det A(r) # O for r = 0,1,2,...

——— — - —— B —— = — > Cuy e -

* Prepared under contract NASw-563 for the NASA

+ Research Consultant, Minneapolis-Honeywell Regulator Company,
Minneapolis, Minnesota
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The problem studied 1s how to select the sequence of points
[u(o), u(1),...1 =u from S : lujl $1; 3 =1,2,...,m so that
x(r), the fesponse of the above recurrence equation; when
subjected to the sequence u, moves from x(0) = X, to an inter-

section with a prescribed target G in the minimum number of
k

stages r and at each stage of the response ka(r)l <BY k=1,2,..

where Bk are constants, (linear combinations of the xk's are
similarly treated.) |
If W(r+l) = A(r) W(r) for r = 0,1,2,... with W(0O) = I then

»
o+

x(r) = W(r) x, + W(r) Y w(3) B(3-1) u(s-1) (2)
J=1
The constraint: ka(r)l < Bk, k =1,2,...n will now be transformed
into a corresponding inequality constraint involving the control
sequence u = [u(0), u(i) ... u(T-1)] for fixed integetxr > 0.
Denote the closed conVei set §2x c?i cee X g?C:RmT by (2. A
control seqesnce u = [u(0), u(1) ... u(T-1)] is allowable if it
belongs to g?.
For r = 0, x(0) = W(0) X, = %, which does not depend

on the control sequénce but demands that the initial data is

such that |xk(0)| < Bk; k=1,2,...n. Forr =1,

=@ = W) %3(0) + wh(2) W) Bl(0) uw¥(0)]

B k = 1,2,...n.

IN

Oor
n

m
;Zi W?(l) xj(l) xJ(0) + E; 75 u(O)l < Bk; k=1,2,...,0

°’n,
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where W?(l) denotes the kjth element of the matrix W{l)} and
repeated index denctes summation with respect to that index.

Tne above inequality on u(0O) defines a clossd convex subset in

mT

the space R~ of variables u = [u(0), u(l) ... u{(T-1]. In fact,

this subset 1s defined by hyperplanes. This subset of RmT is

dencted by A(0).

For r = 2,

k,

[xK(s)| = lw?(e) xJ(0) + w¥

$(2) wil(1) B (0) ui0)

~1d, .
+ wfj‘(z) wzluie) BA(1) wi1)] < =5,

T

o s ma - - R ~ N R - L= - FISN
‘vhe SO gellned subsgeT oI K & 1s denoted by AHA{l).

The subsets
A(2): A(3),...,A(T—l)

mT

~f R are similarly defined.

r(r) = ?zﬂA(o) 0...0A(T-1)cR™T

iz c¢l:s3ed and cenvex {maybe empty). If a control s
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0) ... u{m-1)] belcngs tc the nonempty set
k

¥

u
corresponding response is such that ixk(t)l < B" for
r=0,1,2, ..., and k=1, 2, ... n. Conversely, 1f

Ix%(r)] < B r=0,1,2, ...T; k=1, 2, ..., nwithue Q
the corresponding control sequence u belongs to T'{(T). Thus the
problem of cptimum control with bounded phase coordinates can be
considered as one of finding the best control sequence u in some
closed convex constraint set F(T)c:RmT.

As has been dcne for the case where the phase variables are

not bounded the target G = {xlx H’x.g c}, where ¢ » O 18 a con-

stant and H = H > O. Introducing the positive definite function
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V(x) = x-Hx and the error function E(x) = x:Hx - ¢, the time

1l

optimal control problem with bounded phase coordinates is that of
finding the first T > O such that E(x) = O for some x(T) belonging
to the set of attainability K(T,xo). K(T,xo) is the collection
of end points of responses x(T) which initiate at X, for all control
seguences u = [u(0), u(l),..;u(T-l)] belonging to I'(T). Since

the function which maps a point u € P(T)CIRmT into a point

x(T) € R® is linear, the image of the closed convex set I'(T) is

a closed convex set, K(T,xo)° Thus if T'(T) is not empty for

fixed T < ™ there 1s a unique point x* of'K(T,xo) where V(x) is

a minimum (ﬁere T* denotes the first (émalleét) T for which

E(x) = 0 with x e—K(T,xo)). The method of finding an optimum
control is to increase T one step at a time finding at each time
the point x* of K(T,xo) which minimizes E(x). When a T, namely
T*, is found for which E(x) = O for some x € K(T*,xo) an optimum
control sequence is knowncr An attempt is now made to find a

path u(t) € I'(T) depending on a continuous parameter t so that the

corresponding'response
T -1 N
x(T,t) = W(T) x + 321 w(T) W ~(J) B(J-1) u(j-1,t) (3)

moves toward x* e K(T, X, ) as t—>00 for fixed 0 < T < T™*. To

find tkiSpath corrections to u are computed from
d
& (3-1,t) = g(x(T,t))

for j = 1,2,...T, where g(x(T,t)) has yet to be found.
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Along a solution curve x(T,t),

dv{x(T,t)) _ OV ox
( ét ))‘" d3x ot

2H x(T, t) (T t)

T .
2H x(T,t): 2 h(i) u(3-1,t).
J=1

Here h(J) = W(T) W-l(J) é(j-l). Considering only one control
variable u, i.e., m = 1, the function g(x(T,t)) is defined as
follows:

u(g-1,t) = -p(J) h(y) Bx(T,t) (4)
if

u(t) = [U(O,t), u (1;t) eve u(T'l:t)] € (F(T) - aP(T)))

(constant = B8(j) > 0)
and
u(d-1,t) = -K(3)8(J)n(3)H x(T,t) (5)
if u(t) e dT(T), where 0 < K(J) < 1 and K with norm

|K|~ glK(j)lis the largest vector such that the vector u based
at u(t) € dr(T) is directed into[ (T). That is, if u(t) lies

in the hyperplanes a u + b =0 for 1 =1,2,...v of the defining
hyperplanes of [ (T) then along the solution curves u(t), it is
required that

d(ai-u(t)+-bi)
dt

To find this a linear programming problem has to be solved or the

= at.i(t) < o.

method of gradient projection as discussed in reference 1 must
~

be used. The linear programming problem involves finding K for

equation (5) such that |ﬁ| is maximum for K satisfying the con-

straints:



0 < K(J) < 1, and at.i(t) = k.ot

£ 0; for i =1,2,...v.

To use the gradient projection scheme a matrix (equation 4.12 of
reference 1) which is size T x T must be inverted, where T is
the dimension of the space u (for one control variable defined
on T segménts). |

Since

: T o
V= -2 J_z_:l(H x(T,t) n(J3))% 6(J) K(J) <0

with 8(J) > 0, O S_K(J) 1, it is not hard to prove convergence

of V(x) to V(x*) as t—>o0; using the method for the unconstrained
case. Unfortunétely it requires time to calculate K and therefore
the above computation for correction of the control must be
discretized. Corrections of the control can be computed

from the recurrence equatidn

2 (501) 2 W) (5m1) - x B8N 1) (T,0)

relating the value of u at i+l to the value of u at i for
k> O0Oand 1 = 1,2,..., One additional problem is ncw encountered
in that the step size must be such that the corrected value of the
control remains in the restraint set. The step size can be
determined by selecting a value of k and then checking the
constraints. If they are not satlsfied k could be halved, and
so on. Rosen proves convergence for this procedure in reference 1,
page 193.

A similar analysis is possible for two or more control
variables. |

Although the above schedule of computations can be carried

out using high speed computers to find the optimum control sequence
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for a given initial state, it does not appear possible to do
the calculation on line as can be done for the unbounded phase

coordinate case.

CONCLUSIONS
The problem of optimum control of discrete systems subject
to phase variables, constraints and constraints on the control
variables has been reduced to one involving constraints on the
control variables only. An algorithm equation 4, has been
developed for determining the control of the new constraint region
which provides a minimum to the quadratic cost function. The

computation does not appear to be practical for on line solutions.
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